Pandas
Buy now
Learn more
Section 1: Introduction
Pandas, part 1 -- introduction.ipynb
1. Introduction
2. What is pandas?
3. Installing pandas
4. Loading pandas into Jupyter
Section 2: Series
Pandas, part 2 -- series.ipynb
5. Creating a Series
6. Creating a Series with NumPy
7. Setting and retrieving with indexes
8. Retrieving with loc and iloc
9. Setting the index
10. Non-unique indexes
10a. Fancy indexing
11. Basic methods
12. Operations by index
13. Broadcasting operators
14. Boolean Indexing
15. Exercise #1
Exercise #1 text
16. Exercise #1 solutions
Section 3: dtypes and NaN
Pandas, part 3 -- dtypes and NaN.ipynb
17. dtypes
18. Assigning to dtypes
19. Using astype
20. NaN
20a. Skipping NaN
21. dropna and fillna
22. Fill value
23. Exercise #2
Exercise #2 text
24. Exercise #2 solutions
Section 4: Advanced series functionality
Pandas, part 4 -- advanced series.ipynb
25. Size and count
26. Median and quantiles
27. Describe
28. Describe with non-numeric data
29. Head and Tail
30. Value Counts
31. Duplicated
32. Replace
33. Sorting
34. Apply
35. Exercise #3
Exercise #3 text
36. Exercise #3 solutions
Section 5: Strings
Pandas, part 5 -- Strings.ipynb
37. Strings in Pandas vs NumPy
38. String methods and the "str" object
39. Finding numbers
40. startswith and endswith
41. [] and strings
42. str.contains
43. find and index
44. Modifying data
45. Splitting and reusing str
46. Exercise #4
Exercise #4 text
47. Exercise #4 solutions
Section 6: Plotting series
Pandas, part 6 -- plotting.ipynb
48. Simple plots with matplotlib
49. More sophisticated plotting with Matplotlib
50. Line plots via pandas
51. Bar plots with pandas
52. Histograms
53. Pie plots
54. Box plots
55. Exercise #5
Exercise #5 text
56. Exercise #5 solutions
Section 7: Data frames
Pandas, part 7 -- data frames.ipynb
57. Data frames introduction
58. Index and columns (simple retrievals)
58a. Dot syntax for column retrieval
59. Setting the index and columns
60. Retrieving an individual value
61. Creating data frames from NumPy arrays
62. Creating data frames from a list of dicts
63. Creating data frames from a dict of lists, arrays, or series
64. Methods on columns
65. Methods on an entire data frame
66. Retrieving multiple columns
67. Retrieving multiple rows
68. Updating values in a data frame
68a. Using "describe" on data frames
68b. Updating a column
68c. Adding columns
68d. Updating values in rows and adding rows
68e. Dropping one or more rows
68f. Dropping one or more columns
69. Exercise #6
Exercise #6 text
70. Exercise #6 solutions
Section 8: Boolean indexes and data frames
Pandas, part 8 -- boolean indexes and data frames.ipynb
71. Boolean indexes on a column
72. Applying boolean indexes to other columns
73. Complex queries across columns
74. Applying a boolean index to an entire data frame
75. Assigning to data frames (recap)
76. Assigning to multiple rows and columns with loc
77. Assigning to a column based on a boolean index
78. Chained assignment: what it is, and how to avoid it
79. Data frame assignment example
80. Assigning a scalar value to a data frame, based on a condition
81. Assigning a vector value to a data frame, based on a condition
82. Using df.replace to replace values across a data frame
82a. Using isna, dropna, and fillna with data frames
83. Using mask and where
84. Using clip
85. Exercise #7
Exercise #7 text
86. Exercise solutions 7
Section 9: Pandas and I/O — reading and writing files
Pandas, part 9 -- input and output.ipynb
87. Pandas, IO and saving to the clipboard
88. Saving to CSV
89. Changing the CSV separator
90. NaN representation
91. Choosing output columns
92. Writing row and column names
93. Saving with compression
94. Reading CSV files
95. Choosing and ignoring header rows
96. Naming columns
97. Choosing columns
98. Choosing and naming
99. Reading NaN values
100. dtype hints when reading CSV
101. Reading in from the network
102. Exercise #8
Exercise #8 text
103. Exercise #8 solutions
104. Excel files
105. JSON files
106. SQL databases
Section 10: Data analysis with Pandas
Pandas, part 10 -- analysis of real-world data.ipynb
Flight delays data
Taxi data
107. Analysis of taxi data (part 1)
108. Taxi data (part 2)
109. Taxi data (part 3)
110. Taxi data (part 4)
111. Taxi data (part 5)
112. Taxi data (part 6)
113. Exercise #9
114. Exercise #9 solutions
Section 11: Memory management and categories
Pandas, part 11 -- Memory management and categories.ipynb
115. Data frames and memory usage
116. Memory usage in series and data frames
117. Categories
118. Setting dtypes upon load
119. Predefining categories
120. Avoiding low-memory warnings
airlines.dat
121. Exercise #10
Exercise #10 text
122. Exercise #10 solutions
Section 12: Indexes and multi-indexes
Pandas, part 12 -- indexes.ipynb
123. Set and reset index
124. Multi-indexes on series
125. Multi-indexes on data frames
126. Stack and unstack
127. Swap level
128. Exercise #11
Exercise #11 text
129. Exercise #11 solutions
college.csv
Section 13: Sorting, merging, and grouping
Pandas, part 13 -- sorting, joining, merging, and grouping.ipynb
reuven_travel.csv
oecd_locations.csv
phonecodes.json
oecd_tourist_spending.csv
weather.zip
130. Sort index
131. Sort values
132. Concatenating data frames
133. Concatenating different data frames
134. Inner and outer joins
135. Merging: inner, left, right, and outer
136. Group by
137. Pivot tables
138. Exercise #12
Exercise #12 text
139. Exercise #12 solutions
Section 14: Plotting data frames
Pandas, part 14 -- plotting.ipynb
140. Plotting data frames
141. Bar plots
142. Stacked bar plots
143. Histograms
144. Pie plots
145. Box plots
146. Scatter plots
147. Scatter plots and colormaps
148. Scatter matrix
149. Exercise #13
Exercise #13 text
150. Exercise #13 solutions
Conclusion
151. Conclusion
Products
Course
Section
Lesson
107. Analysis of taxi data (part 1)
107. Analysis of taxi data (part 1)
Pandas
Buy now
Learn more
Section 1: Introduction
Pandas, part 1 -- introduction.ipynb
1. Introduction
2. What is pandas?
3. Installing pandas
4. Loading pandas into Jupyter
Section 2: Series
Pandas, part 2 -- series.ipynb
5. Creating a Series
6. Creating a Series with NumPy
7. Setting and retrieving with indexes
8. Retrieving with loc and iloc
9. Setting the index
10. Non-unique indexes
10a. Fancy indexing
11. Basic methods
12. Operations by index
13. Broadcasting operators
14. Boolean Indexing
15. Exercise #1
Exercise #1 text
16. Exercise #1 solutions
Section 3: dtypes and NaN
Pandas, part 3 -- dtypes and NaN.ipynb
17. dtypes
18. Assigning to dtypes
19. Using astype
20. NaN
20a. Skipping NaN
21. dropna and fillna
22. Fill value
23. Exercise #2
Exercise #2 text
24. Exercise #2 solutions
Section 4: Advanced series functionality
Pandas, part 4 -- advanced series.ipynb
25. Size and count
26. Median and quantiles
27. Describe
28. Describe with non-numeric data
29. Head and Tail
30. Value Counts
31. Duplicated
32. Replace
33. Sorting
34. Apply
35. Exercise #3
Exercise #3 text
36. Exercise #3 solutions
Section 5: Strings
Pandas, part 5 -- Strings.ipynb
37. Strings in Pandas vs NumPy
38. String methods and the "str" object
39. Finding numbers
40. startswith and endswith
41. [] and strings
42. str.contains
43. find and index
44. Modifying data
45. Splitting and reusing str
46. Exercise #4
Exercise #4 text
47. Exercise #4 solutions
Section 6: Plotting series
Pandas, part 6 -- plotting.ipynb
48. Simple plots with matplotlib
49. More sophisticated plotting with Matplotlib
50. Line plots via pandas
51. Bar plots with pandas
52. Histograms
53. Pie plots
54. Box plots
55. Exercise #5
Exercise #5 text
56. Exercise #5 solutions
Section 7: Data frames
Pandas, part 7 -- data frames.ipynb
57. Data frames introduction
58. Index and columns (simple retrievals)
58a. Dot syntax for column retrieval
59. Setting the index and columns
60. Retrieving an individual value
61. Creating data frames from NumPy arrays
62. Creating data frames from a list of dicts
63. Creating data frames from a dict of lists, arrays, or series
64. Methods on columns
65. Methods on an entire data frame
66. Retrieving multiple columns
67. Retrieving multiple rows
68. Updating values in a data frame
68a. Using "describe" on data frames
68b. Updating a column
68c. Adding columns
68d. Updating values in rows and adding rows
68e. Dropping one or more rows
68f. Dropping one or more columns
69. Exercise #6
Exercise #6 text
70. Exercise #6 solutions
Section 8: Boolean indexes and data frames
Pandas, part 8 -- boolean indexes and data frames.ipynb
71. Boolean indexes on a column
72. Applying boolean indexes to other columns
73. Complex queries across columns
74. Applying a boolean index to an entire data frame
75. Assigning to data frames (recap)
76. Assigning to multiple rows and columns with loc
77. Assigning to a column based on a boolean index
78. Chained assignment: what it is, and how to avoid it
79. Data frame assignment example
80. Assigning a scalar value to a data frame, based on a condition
81. Assigning a vector value to a data frame, based on a condition
82. Using df.replace to replace values across a data frame
82a. Using isna, dropna, and fillna with data frames
83. Using mask and where
84. Using clip
85. Exercise #7
Exercise #7 text
86. Exercise solutions 7
Section 9: Pandas and I/O — reading and writing files
Pandas, part 9 -- input and output.ipynb
87. Pandas, IO and saving to the clipboard
88. Saving to CSV
89. Changing the CSV separator
90. NaN representation
91. Choosing output columns
92. Writing row and column names
93. Saving with compression
94. Reading CSV files
95. Choosing and ignoring header rows
96. Naming columns
97. Choosing columns
98. Choosing and naming
99. Reading NaN values
100. dtype hints when reading CSV
101. Reading in from the network
102. Exercise #8
Exercise #8 text
103. Exercise #8 solutions
104. Excel files
105. JSON files
106. SQL databases
Section 10: Data analysis with Pandas
Pandas, part 10 -- analysis of real-world data.ipynb
Flight delays data
Taxi data
107. Analysis of taxi data (part 1)
108. Taxi data (part 2)
109. Taxi data (part 3)
110. Taxi data (part 4)
111. Taxi data (part 5)
112. Taxi data (part 6)
113. Exercise #9
114. Exercise #9 solutions
Section 11: Memory management and categories
Pandas, part 11 -- Memory management and categories.ipynb
115. Data frames and memory usage
116. Memory usage in series and data frames
117. Categories
118. Setting dtypes upon load
119. Predefining categories
120. Avoiding low-memory warnings
airlines.dat
121. Exercise #10
Exercise #10 text
122. Exercise #10 solutions
Section 12: Indexes and multi-indexes
Pandas, part 12 -- indexes.ipynb
123. Set and reset index
124. Multi-indexes on series
125. Multi-indexes on data frames
126. Stack and unstack
127. Swap level
128. Exercise #11
Exercise #11 text
129. Exercise #11 solutions
college.csv
Section 13: Sorting, merging, and grouping
Pandas, part 13 -- sorting, joining, merging, and grouping.ipynb
reuven_travel.csv
oecd_locations.csv
phonecodes.json
oecd_tourist_spending.csv
weather.zip
130. Sort index
131. Sort values
132. Concatenating data frames
133. Concatenating different data frames
134. Inner and outer joins
135. Merging: inner, left, right, and outer
136. Group by
137. Pivot tables
138. Exercise #12
Exercise #12 text
139. Exercise #12 solutions
Section 14: Plotting data frames
Pandas, part 14 -- plotting.ipynb
140. Plotting data frames
141. Bar plots
142. Stacked bar plots
143. Histograms
144. Pie plots
145. Box plots
146. Scatter plots
147. Scatter plots and colormaps
148. Scatter matrix
149. Exercise #13
Exercise #13 text
150. Exercise #13 solutions
Conclusion
151. Conclusion